

CSCI 3435: Operating System

2022 Winter Session					
Total Class Sessions: 25	Instructor: Staff				
Class Sessions Per Week: 6	Classroom: TBA				
Total Weeks: 4	Office Hours: TBA				
Class Session Length (Minutes): 145	Language: English				
Credit Hours: 4					

Course Description:

The purpose of this course is to provide an overview of modern computer operating systems. The following topics will be covered in this course: Introduction to Operation System, Principles of Operating System, Processor, CPU Scheduling, Interrupts and Exceptions, File Systems, Process and memory Management, Deadlocks, Address Binding, Hard Disk Drive Scheduling, Security Operating Systems and Operating System attacks.Upon completion of the course, each student will gain a solid understanding of modern operating systems via a series of challenging miniprojects.

Prerequisite: Foundations of Computer Science, Data Structures and Algorithms, Computer System Organization.

Learning objectives:

Upon completion of this course, students will be able to:

- Gain experience about creating the Operating System;
- Understand the Operating system Process and designing architecture:

- Understand Process and Memory management, CPU Scheduling and Security in Operating Systems;

- Understand the Hard Disk management Scheduling and Address Binding ;

- Understand the importance of File System and Deadlocks in Operating System

Course Materials:

Operating System Concepts, 10th Edition, by Abraham Silberschatz, Peter Baer Galvin, Greg Gagne.

Publisher: Wiley (February 9, 2021) Language: English ISBN-10: 1119800366 ISBN-13: 978-1119800361 *The 9th Edition is also acceptable*

Course Format and Requirements:

The course will take place in a computer lab and the course format including lecture, programming project, and in-class discussion.

The specific topics that will be covered in the classes are listed in the course syllabus. The class period will consist of an active learning environment. During a majority of the class time, students will be actively working on problems under the instructor's guides.

Attendance:

Attendance will not be taken but is strongly recommended. Each student will have three allowed absences and no grade deduction will be made for the first three absences. More than three unexcused absences will result in an automatic reduction in your participation grade, for instance from A- to B+. Your active participation in the class is expected and encouraged.

Course Assignments:

Quizzes:

There will be 6 quizzes this semester, given during the discussion sections. Each quiz will be on the material covered that week. There will be NO make-ups for quizzes for any reason. All of the quizzes will be closed book.

Midterm Exam:

The in-class, close-book and non-cumulative midterm exam will be given through this course. The midterm exam will be based on the knowledge covered in class. No excuse will be accepted if students do not have legitimate excuses for absence. Physician Statement is required for missing the exam due.

Weekly Projects :

There will be four hands-on projects based on course need. It will count for 40% of your grade for the course. The projects will enrich students' knowledge on writing large programs. The score will be given based on the correctness of the program.

Final Exams:

The final will be in-class, cumulative and close-book. The final exams will be based on concepts covered in class. Note that the final will not be taken during the normal class times. Exact time and location for final will be announced later.

Course Assessment:

Quizzes	15%
Weekly Projects	35%
Midterm Exams	20%
Final Exam	30%
Total	100%

Grading Scale (percentage):

A+	Α	А-	B +	B	B-	C+	С	C-	D+	D	D-	F

98-	93-	90-	88-	83-	80-	78-	73-	70-	68-	63-	60-	<60
100	97	92	89	87	82	79	77	72	69	67	62	

Academic Integrity:

Students are encouraged to study together, and to discuss lecture topics with one another, but all other work should be completed independently.

Students are expected to adhere to the standards of academic honesty and integrity that are described in the Chengdu University of Technology's *Academic Conduct Code*. Any work suspected of violating the standards of the *Academic Conduct Code* will be reported to the Dean's Office. Penalties for violating the *Academic Conduct Code* may include dismissal from the program. All students have an individual responsibility to know and understand the provisions of the *Academic Conduct Code*.

Special Needs or Assistance:

Please contact the Administrative Office immediately if you have a learning disability, a medical issue, or any other type of problem that prevents professors from seeing you have learned the course material. Our goal is to help you learn, not to penalize you for issues which mask your learning.

Week	Topics	Assignments
1	Go through syllabus and introduction to the course	Quiz 1
	Introduction to Operating System	Quiz 2
	 Operating System Overview 	Weekly Project
	Computer Systems/OS Structure	
	Principles of Operating System	
	Process Concept	
	> Threads	
	Processer	
	 Single Processor System 	
	 Multiprocessor System 	
	 Interprocess Communication 	
	CPU Scheduling	
	Basic Concept	
	 Scheduling Algorithms 	

Course Schedule:

	Sleep and Wakeup	
2	Process Management	Quiz 3 Weekly project
	Process States	Midterm Exam
	Process Control Block (PCB)	
	Interrupt System and Exceptions	
	 Software Interrupt 	
	 Hardware Interrupt 	
	 Interrupt Handler 	
	File Systems	
	Buffer Cache Layer	
	Logging Layer	
	Block allocator	
	Directory Layer	
	 File Descriptor Layer 	
3	Process Synchronization	Quiz 4 Weekly project
	 Synchronization Hardware 	
	> Semaphore	
	 Classical Synchronization 	
	Deadlocks	
	Deadlocks Overview	
	 Deadlock Prevention using Static Rules 	
	Deadlock Avoidance Using Banker's Algorithm	
	Deadlock detection and recovery	
	Memory management	
	Memory pyramid	
	Memory Types	

	Backup Memories	
	Review Program Processing Cycle	
	Dynamic Linking	
	Dynamic Loading	
	 Logical and Physical addresses 	
4	Address Binding	Quiz 5
	 Compile Time 	Quiz 6 Weekly project
	Load Time	Final Exam
	Run Time address binding	
	Hard Disk Drive Scheduling	
	 Disk Space Allocation 	
	 HDD Scheduling Algorithms 	
	Security in Operating System	
	Security threats and aspects	
	 Security Services in OS 	
	Operating System Attacks	
	Buffer Overflow on the stake	
	Overflow on Heap	
	 Integer Overflow 	
	Review final exam	